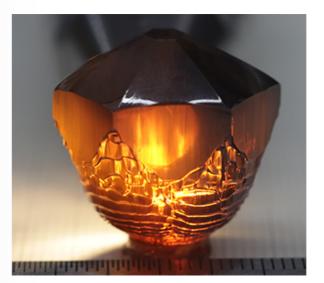
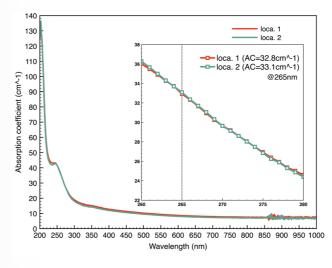

Ultratrend Technologies Co.,Ltd. 1

Standard specifications of M-plane AIN substrate

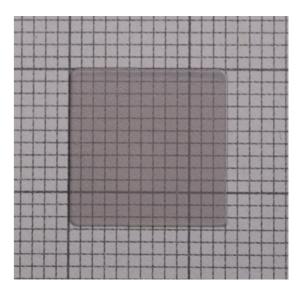
At present, Ultratrend Technologies Co., Ltd. (UTC) can provide 10x10mm/Ф10mm/Ф15mm/Ф20mm/Ф 25.4mm/Ф30mm/Ф50.8mm standardized and 10-20mm non-polar m-plane, 5-60 mm tailored high-quality AIN single crystalline wafers, which are ideally suited as substrate for UVC-LED, UV lasers, UV detectors and high-power, high-temperature, high-frequency electronic devices, etc..

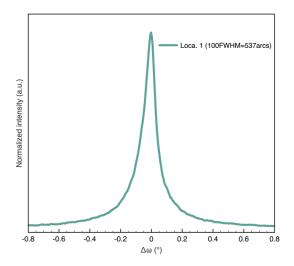


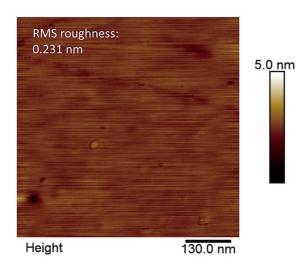
Characteristic		Specification				
Product Serial	UTI-AIN-MB					
Size	10mm-20mm					
Thickness (μm)	400 ± 50					
Crystal type	2Н					
Orientation	{10-10}± 1°					
Surface Finish	Al face: CMP (double side polishing is customizable)					
Roughness	Al face: ≤0.5 nm					
rouginiess	N face (backside): ≤1.2 um					
Shape	Rectangular					
Grade	S (Super)	P (Production)	R (Research)			
FWHM-HRXRD@(10-10) (arcsec)	≤300	≤700	≤1000			
Absorption Coefficient@265nm (cm-1)	≤50	≤70	≤100			
Edge Exclusion (mm)	1	1	1			
Scratches	None	None	None			
Edge Chips	None	None	≤3 total cumulative length≤1.0 mm			
Usable Area		≥90%				
TTV (μm)	≤ 30					
Bow (μm)	≤ 30					
Wrap (μm)	≤ 30					
Cracks	None ,by naked eye ,high intensity light					
Surface Contamination	None ,by naked eye ,diffuse light					
Packaging	Single wafer cups					


Note: Test results for these speifications are slightly different depending on equipments and/or software

Ultrarrend Technologies | 與趋光电




AIN single crystalline boule


UV absorption coefficient

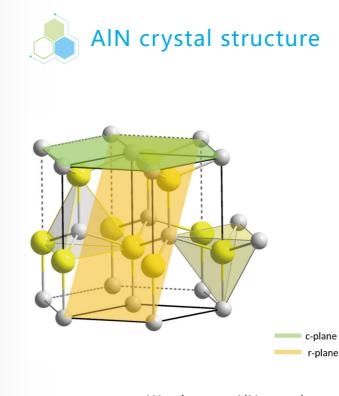
M-plane AIN single crystalline substrate

X-ray rocking curves in the 10-10 reflection

Morphologies of polished surface after CMP by AFM

Applications of AIN substrates

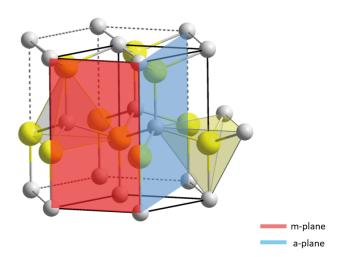
Silicon-based semiconductor technology has reached its limits and could not satisfy the requirements of future electronic devices. As a typical kind of 3rd/4th-generation semiconductor material, aluminum nitride (AIN) has superior physical and chemical properties such as wide bandgap, high thermal conductivity, high breakdown filed, high electronic mobility and corrosion/radiation resistance, and is the perfect substrate for optoelectronic devices, radio frequency (RF) devices, high-power/high-frequency electronic devices, etc.. Particularly, AIN substrate is the best candidate for UV-LED, UV detectors, UV lasers, 5G high-power/high-frequency RF devices, which could widely be used in environmental protection, electronics, wireless communications, printing, biology, healthcare, military and other fields, such as UV purification/sterilization, UV curing, photocatalysis, counterfeit detection, high-density storage, medical phototherapy, drug discovery, wireless and secure communication, aerospace/deep-space detection and other fields.


The Physical Vapor Transport(PVT) method has been shown to be the only promising growth technique for high-quality and large-size bulk AIN crystals. UTC has developed a serials of proprietary processes and technologies to grow high-quality AIN single crystalline boules by the PVT method, and has been recognized as a global leader in this field.

Major impurities :

Element	С	0	Si	В	Na	W	Р	S	Ti	Fe
PPMW	27	90	5.4	0.92	0.23	<0.1	<0.1	<0.5	0.46	<0.5

Major impurities measured by GDMS and EGA


Ultrarrend Technologies | 與趋光电

Wurzite-type AIN crystal structure with illustrated major planes

Properties	
Crystal structure	
Lattice constant (Å)	
Conduction band type	
Density (g/cm3)	
Surface microhardness (Knoop test)	
Melting point (°C)	
Thermal conductivity (W/m·K)	
Band gap energy (eV)	
Electron mobility (V·s/cm2)	
Electric breakdown field (MV/cm)	
Acoustic wave velocity (m/s)	

Reference
Wurtzite
a=3.112, c=4.982
Direct bandgap
3.23
800
2750 (10-100 bar in N2)
320
6.28
1100
11.7
11,300